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Stochastic resonance without an external periodic drive in a simple prey-predator model

Renuka Rai and Harjinder Singh*
Department of Chemistry, Panjab University, Chandigarh-160014, India

~Received 15 May 2000!

We have investigated the effect of noise on a simple prey-predator model where the oscillations are triggered
by the internal dynamics of the system without the aid of any external periodic drive. We report the occurrence
of stochastic resonancelike behavior in this system, which does not have a threshold or a potential barrier, in
the absence of an external drive.

PACS number~s!: 05.40.2a, 82.20.Mj, 02.50.2r
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I. INTRODUCTION

Since the introduction of the phenomenon of stocha
resonance~SR! @1# to explain the periodicity of ice ages,
has been studied extensively@2,3# and used to explain a wid
variety of phenomena@4#. In most studies it has been show
that the presence of noise in a bistable system driven b
subthreshold external field allows coherent interwell tran
tions and thus strongly amplifies the signal. Apart fro
bistable systems it has been observed in monostable sys
@5#, random walk@6#, excitable systems@7#, discrete time
maps@8#, neural network based models@9#, etc. But in all
these studies the system is driven by a subthreshold exte
drive.

In a numerical study, Ganget al. @10# have shown SR to
occur even in the absence of an external periodic drive. T
have studied noise induced effects in a two-dimensional
tonomous system in which a limit cycle appears as so
parameter is varied. In the present paper we show that
like behavior is exhibited by an autocatalytic reaction mo
whose internal dynamics alone can trigger an oscillat
even when no other periodic drive is present. A very imp
tant feature of the system under investigation here is tha
does not have a threshold and the process does not des
hopping through a potential barrier. Recently several
namical or nondynamical systems without threshold h
been reported to utilize noise to amplify a weak perio
input signal @11,12#. In Sec. II we define our model. Th
numerical simulations and their results are presented in
III. The results are discussed in Sec. IV followed by conc
sions in Sec. V.

II. PREY-PREDATOR MODEL

Oscillating or periodic phenomenon are ubiquitous
physics, chemistry, astronomy, and biology. One of
widely studied and simplest model that mimics a variety
oscillating processes is the prey-predator model@13#. It has a
simple mechanism and most of the oscillating chemical m
els developed later@14# are modifications of this model b
Lotka @13#,

A1X→
k1

2X, ~1!
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X1Y→
k2

2Y,

Y→
k3

B.

The concentrations of the initial reactantA and the final
productB are maintained constant in time.

The deterministic equations for this system are

dx

dt
5k1ax2k2xy,

dy

dt
5k2xy2k3y, ~2!

wherea, x, andy are the concentrations of speciesA, X, and
Y, respectively. The stationary state for this system isxs
5k3 /k2 andys5k1a/k2 .

The stability analysis@15# of this steady state gives a pe
riodic motion for any small deviation from the steady sta
i.e., the system is marginally stable. The concentration oX
andY oscillate around the steady state with certain freque
that is independent of the initial conditions. We call it th
characteristic frequency of the system (V). In the x2y
phase space, there are an infinite number of periodic or
around the steady state.

We can convert the system to a Hamiltonian system w
a logarithmic change of variables and define a constan
motion, say energyE, of the system as@16#:

E5k2y1k3x2k1a loge y2k3 loge x. ~3!

The orbits that are closer to steady state have a lower ene
For a deterministic system, the value ofE remains constan
in time.

Realistic oscillatory systems do not follow the solutio
of the above differential equations exactly. The concen
tions of various species fluctuate around their determini
values due to environmental noise. Noise may be due
external factors like fluctuations in incoming flux or tem
perature, or internal~due to finite system size@17#, etc.!. The
simplest way to include these fluctuations is to add a no
term to the above deterministic equation and the equiva
stochastic differential equation will be,
8804 ©2000 The American Physical Society
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dx

dt
5k1ax2k2xy1h1~ t !,

dy

dt
5k2xy2k3y1h2~ t !, ~4!

whereh i(t) is a uniform white noise witĥ h i(t)&50 and
^h i(t)h j (t8)&5Dd i j d(t2t8); i , j 51,2.

It is not possible to deal with the above coupled differe
tial equations analytically, so we will treat them numerical

III. NUMERICAL SIMULATION OF A NOISY
PREY-PREDATOR MODEL

We have performed numerical simulations of the syst
~3! with k151, k252, andk352. The concentration of A is
a52 and is maintained constant externally. The differen
equations were solved using fourth-order Runge Ku
method@18# and an average of over 1000 realizations w
taken. Though we start with the same initial conditions
all these trajectories we record the time series only after 2
steps~discarding them as transients! and at this time all the
trajectories will have different values ofx andy ~though they
may be close!. We record the average concentration ofx for
8192 time steps. In the presence of noise, the axes ofx2y
phase space may be crossed, i.e., the concentrations
become negative. One way to overcome this problem
negative concentrations is to use multiplicative noise@19#. In
an autonomous system, for low noise intensities, multipli
tive and additive noise@20# yield similar results. In our simu-
lations we use additive noise and discard those value
noise for which eitherx or y becomes negative. Under the
conditions, it is observed that increasing the number of ti
steps does not alter the results significantly. The reason
be that if the system is very near the steady state, a s
noise does not drive it to a very far off value. However
very strong noise may take it to a far from equilibrium sta
There is a possibility of getting a different result when one
the concentrations goes to zero within numerical precis
~as a result of this the other concentration may either
proach zero or infinity!.

If the system is initially present close to the steady sta
the concentrations ofX andY show oscillations in time and
the phase space shows eliptical orbits around the ste
state. The effect of noise is to take the system to the ne
boring deterministic orbits~Fig. 1!. As a result the energy o
the system no longer remains constant. In Fig. 2, we sh
the energy as a function of time for the noisy prey-preda
system. In the presence of weak noise the energy shows
ligible fluctuations. The value for the deterministic syste
when it is at steady state is 4.0. When the noise intensit
high the energy of the system shows comparatively la
fluctuations~Fig. 2!. The noise sometimes takes the syst
away from the steady state and sometimes it brings it b
near the steady state.

To obtain the various frequencies contributing to the d
namics of the system, we perform the power spectrum an
sis. For the system that is initially present at the steady s
i.e., xi51.0 andyi51.0, the power spectrum does not sho
discretely singular contributions from any frequency. B
due to noise present in the environment it is bound to m
-
.
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away from the steady state and the concentrations,x andy,
start showing oscillatory behavior. Therefore, it makes m
sense to study the system when it is initially present close
steady state. In that case, the power spectrum shows a
at the characteristic frequencyV of the system. For very low
noise, the spectrum peak is low~Fig. 3!. But as we increase
the noise intensityD, the height of the peak increases. This
a significant observation indicating the possibility of the o
currence of SR. Also, with increase in noise intensity t
higher harmonics of the fundamental frequency appear~Fig.
3! and their heights also increase with an increase inD. If we
still increaseD, the power spectrum shows a broad peak w
large background noise~Fig. 3!.

Figure 4 shows a plot of signal-to-noise ratio~SNR! vs
noise intensityD. The SNR has been defined as the ratio

FIG. 1. Trajectories for different initial conditions with nois
~solid line! and without noise~dots and dashes, dots, small dash
big dashes!. The noisy trajectory starting from the initial conditio
xi51.001; yi51.001 visits various deterministic orbits. Values
the other parameters area52, k151, k252, andk352.

FIG. 2. Constant of motionE vs time for xi51.001, yi

51.001,a52, k151, k252, k352, andD54.0.
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intensity of the peak in the power spectrum to the heigh
the noisy backgroundQ(V) at the same frequency.

SNR5 log10F total power in the frequencyV

Q~V! G . ~5!

Similarly, the SNR of the second harmonic is defined. W
observe maxima in SNR of the first and second harmon
plotted against the noise intensityD. This indicates that the
noise has induced coherent motion in the system that
initially at the steady state and this coherence is a maxim
for an optimum noise intensity.

These results clearly demonstrate the phenomenon of
which has been stimulated by noise alone in a system wh
deterministic dynamics are autonomous.

FIG. 3. Power spectra of the above system initially presen
xi51.001, andyi51.001 for differentD (a52, k151, k252, and
k352).

FIG. 4. SNR vsD for the first and second harmonics for th
system initially atxi51.001; yi51.001~all the parameters are th
same as in Fig. 2!.
f

e
s

as
m

R,
se

IV. DISCUSSION OF RESULTS

SR in an autonomous system has been demonstrate
numerical studies on a 2D system,@10# which exhibits a
stable limit cycle for certain values of a control parameter.
this regime, the power spectrum shows ad function at the
frequency of the limit cycle. Noise was found to broaden t
peak and shift it towards higher frequency. In another regi
of the control parameter, the system has four fixed poi
two stable and two unstable. Noise is found to induce a p
in its power spectrum at a definite frequency and the p
shifts to a higher frequency with increase in noise intens
Explanations for these results were given by Rappel
Strogatz@21#. However, in our system, noise does not effe
the position of the peak in the power spectrum. The pow
spectrum shows the peak at the same frequency for any v
of noise strength.

The crucial property of the system studied by Ganget al.
@10# is the infinite-period bifurcation mechanism for the fo
mation of the limit cycle. Due to the saddle node bifurcatio
the motion along the limit cycle is highly nonuniform. It wa
suggested@21#, that this kind of SR will not occur in a sys
tem whose bifurcations are created by a Hopf bifurcation

Apart from this, there is another very important differen
between our model and the other systems. Most of the
tems that have been explored for the occurrence of SR
cluding that of Ganget al. @10#, have a common feature
They have three fixed points, an unstable point between
stable points. Due to this, these models have a threshold
potential barrier and the processes describe the hop
through a potential barrier. However, in the past few ye
the role of noise and periodic drive in nondynamical syste
has been investigated. These studies show that SR can o
even in threshold free systems@11#, i.e., those systems tha
are able to respond to input signals of arbitrarily small a
plitude. In contrast, in a system with a threshold, a subthre
old forcing does not generate any output. These studies s
that the addition of external noise to a periodic input sig
may result in enhancement of the response of the system
no external drive is needed in the Lotka-Volterra model st
ied here because the internal dynamics of the system ge
ates a periodic signal. The prey-predator model has mar
ally stable periodic solutions for small perturbations aw
from steady state. The effect of noise is to trigger oscillatio
between the neighboring orbits with a time scale that co
sponds to a characteristic frequency. It is interesting to
that an increase in the noise intensity induces more cohe
motion resulting in a sharper peak in the power spectrum

V. CONCLUSION

In the present paper we have studied the behavior o
simple model of oscillating chemical system in the prese
of noise, which may be external or internal. Although,
noisy prey-predator system will ultimately go to the sta
where either both the concentrations are zero or wherey is
zero andx escapes to infinity, it is interesting to observe t
occurrence of SR-like behavior in such a system in the sh
time limit ~even in the absence of an external periodic driv!.
In an interesting work by Lipowski@22#, SR without an ex-
ternal drive has been reported in a lattice prey-preda
model using Monte-Carlo simulations. In an investigation
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interplay between noise and periodic modulations in
Lotka-Volterra model of two species competition, Vilar an
Sole @19# have demonstrated that the presence of nois
responsible for the generation of temporal oscillations a
for the appearance of spatial patterns that do not arise in
deterministic model. This was the first example of SR in
model of population dynamics. In their paper, a control p
rameter, which accounts for the interactions among the s
cies, is periodically modulated and noise helps the system
respond to this modulation. However in the paper repor
here the system has its characteristic time scale and doe
require any external drive.

These studies show that, contrary to our belief, envir
mental noise does not always play a destructive role of w
ing out the coherent behavior in such systems. There a
v.
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wide range of chemical and biological systems that can
modeled by the above system and SR without external p
odic drive may have interesting applications there.

We would like to emphasize that the occurrence of SR
the above system indicates that it is a generic phenome
and the presence of an external drive or a system havin
threshold or potential barrier is not essential for its occ
rence. It will be interesting to study the effect of realist
noise on these systems. In many situations the time sca
noise is comparable to that of the system where it beco
important to investigate the effect of noise correlation. W
are extending this paper to other systems with stable li
cycles or more complex features as solutions.
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