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Stochastic resonance without an external periodic drive in a simple prey-predator model
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We have investigated the effect of noise on a simple prey-predator model where the oscillations are triggered
by the internal dynamics of the system without the aid of any external periodic drive. We report the occurrence
of stochastic resonancelike behavior in this system, which does not have a threshold or a potential barrier, in
the absence of an external drive.
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I. INTRODUCTION ko
X+Y—=2Y,
Since the introduction of the phenomenon of stochastic
resonancéSR) [1] to explain the periodicity of ice ages, it ks
has been studied extensivéR;3] and used to explain a wide Y—B.

variety of phenomenp4]. In most studies it has been shown

that the presence of noise in a bistable system driven by a The concentrations of the initial reactafstand the final
subthreshold external field allows coherent interwell transiproductB are maintained constant in time.

tions and thus strongly amplifies the signal. Apart from The deterministic equations for this system are
bistable systems it has been observed in monostable systems

[5], random walk[6], excitable system§7], discrete time dx
maps[8], neural network based mod€l8], etc. But in all a:klaX— KoXy,
these studies the system is driven by a subthreshold external
drive.
In a numerical study, Ganet al.[10] have shown SR to d_y:kzxy_ Kay, )
occur even in the absence of an external periodic drive. They dt

have studied noise induced effects in a two-dimensional au-

tonomous system in which a limit cycle appears as somavherea, x, andy are the concentrations of specigsX, and
parameter is varied. In the present paper we show that SRY, respectively. The stationary state for this systenxds
like behavior is exhibited by an autocatalytic reaction model=k3/k, andys=k;a/k,.

whose internal dynamics alone can trigger an oscillation The stability analysi$15] of this steady state gives a pe-
even when no other periodic drive is present. A very impor-riodic motion for any small deviation from the steady state,
tant feature of the system under investigation here is that ite., the system is marginally stable. The concentratioX of
does not have a threshold and the process does not descridedY oscillate around the steady state with certain frequency
hopping through a potential barrier. Recently several dythat is independent of the initial conditions. We call it the
namical or nondynamical systems without threshold havesharacteristic frequency of the systerf2)( In the x—y
been reported to utilize noise to amplify a weak periodicphase space, there are an infinite number of periodic orbits
input signal{11,17. In Sec. Il we define our model. The around the steady state.

numerical simulations and their results are presented in Sec. We can convert the system to a Hamiltonian system with
[Il. The results are discussed in Sec. IV followed by conclu-a logarithmic change of variables and define a constant of
sions in Sec. V. motion, say energ¥, of the system afl6]:

Il. PREY-PREDATOR MODEL E=Kkoy+ksx—k;aloge y—kzloge X. 3

Oscillating or periodic phenomenon are ubiquitous in .
; . . The orbits that are closer to steady state have a lower energy.
physics, chemistry, astronomy, and biology. One of th S .
: ) ; e , or a deterministic system, the value Bfremains constant
widely studied and simplest model that mimics a variety ofin time
o_scnlatmg Processes 1S the prey predat_or r_ntﬁ(ﬂ@]. I has a Realistic oscillatory systems do not follow the solutions
simple mechanism and most of the oscillating chemical mod-

e . of the above differential equations exactly. The concentra-
els developed |atej14] are modifications of this model by tions of various species fluctuate around their deterministic

Lotka [13], values due to environmental noise. Noise may be due to
k1 external factors like fluctuations in incoming flux or tem-
A+ X—=2X, 1 perature, or interngdue to finite system siZe 7], etc). The
simplest way to include these fluctuations is to add a noise
term to the above deterministic equation and the equivalent
*Email address: laltu@panjabuniv.chd.nic.in stochastic differential equation will be,
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1.1 T T T

X
ot =kiax—koxy+ n4(t),

dy
a:kzxy_ K3y + 7,(1), (4) 1.05 -

where 7;(t) is a uniform white noise wit 7;(t))=0 and
(mi(t) m(t"))=Dgo(t—t"); i,j=1.2. . > 1}

It is not possible to deal with the above coupled differen-
tial equations analytically, so we will treat them numerically.

IIl. NUMERICAL SIMULATION OF A NOISY 0.95
PREY-PREDATOR MODEL

We have performed numerical simulations of the system
(3) with k;=1, k,=2, andk;=2. The concentration of A is
a=2 and is maintained constant externally. The differential 0.9 0.95 1 1.05 1.1
equations were solved using fourth-order Runge Kutta
method[18] and an average of over 1000 realizations were FiG. 1. Trajectories for different initial conditions with noise
taken. Though we start with the same initial conditions for(solid line) and without noisedots and dashes, dots, small dashes,
all these trajectories we record the time series only after 2008ig dashes The noisy trajectory starting from the initial condition
steps(discarding them as transientsnd at this time all the x,=1.001; y;=1.001 visits various deterministic orbits. Values of
trajectories will have different values &fandy (though they  the other parameters age=2, k;=1, k,=2, andks=2.
may be closg We record the average concentratiorkdor

8192 time steps. In the presence of noise, the axes9f  away from the steady state and the concentratigrsdy,
phase space may be crossed, i.e., the concentrations mart showing oscillatory behavior. Therefore, it makes more
become negative. One way to overcome this problem ofense to study the system when it is initially present close to
negative concentrations is to use multiplicative ngls&. In  steady state. In that case, the power spectrum shows a peak
an autonomous system, for low noise intensities, multiplicaxt the characteristic frequené€y of the system. For very low
tive and additive noisg20] yield similar results. In our simu-  pgise. the spectrum peak is ldiFig. 3. But as we increase
lations we use additive noise and discard those values ghe noise intensityp, the height of the peak increases. This is
noise for which eithex or y becomes negative. Under these 5 significant observation indicating the possibility of the oc-
Conditions, it is observed that increasing the number of tim%urrence of SR. AlSO, with increase in noise intensity the
steps does not alter the results significantly. The reason M&¥gher harmonics of the fundamental frequency apyEiy.

be that if the system is very near the steady state, a smad) and their heights also increase with an increas®.itf we
noise does not drive it to a very far off value. However, agj|| increaseD, the power spectrum shows a broad peak with
very strong noise may take it to a far from equilibrium state.|arge background noisgig. 3.

There is a possibility of getting a different result when one of Figure 4 shows a plot of signal-to-noise rat®NR) vs

the concentrations goes to zero within numerical precisiongjse intensityD. The SNR has been defined as the ratio of
(as a result of this the other concentration may either ap-

proach zero or infinity

If the system is initially present close to the steady state,
the concentrations ok andY show oscillations in time and
the phase space shows eliptical orbits around the steady

o ; 4.004 4
state. The effect of noise is to take the system to the neigh-

boring deterministic orbit$Fig. 1). As a result the energy of

the system no longer remains constant. In Fig. 2, we show 2005 L i

the energy as a function of time for the noisy prey-predator -
system. In the presence of weak noise the energy shows neg- g
ligible fluctuations. The value for the deterministic system T
when it is at steady state is 4.0. When the noise intensity is 2
high the energy of the system shows comparatively large
fluctuations(Fig. 2). The noise sometimes takes the system
away from the steady state and sometimes it brings it back 4.001
near the steady state.

To obtain the various frequencies contributing to the dy- \ HML
namics of the system, we perform the power spectrum analy- 4 0”“ 100'000 200000 = 30000 400'000 500000
sis. For the system that is initially present at the steady state, Time

i.e.,x;=1.0 andy;=1.0, the power spectrum does not show
discretely singular contributions from any frequency. But FIG. 2. Constant of motionE vs time for x;=1.001,y;
due to noise present in the environment it is bound to move-1.001,a=2, k;=1, k,=2, ky=2, andD=4.0.
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IV. DISCUSSION OF RESULTS

SR in an autonomous system has been demonstrated in
numerical studies on a 2D systefr},0] which exhibits a
stable limit cycle for certain values of a control parameter. In
this regime, the power spectrum shows dunction at the
frequency of the limit cycle. Noise was found to broaden the
peak and shift it towards higher frequency. In another regime
of the control parameter, the system has four fixed points,
two stable and two unstable. Noise is found to induce a peak
in its power spectrum at a definite frequency and the peak
shifts to a higher frequency with increase in noise intensity.
Explanations for these results were given by Rappel and
StrogatZ 21]. However, in our system, noise does not effect
the position of the peak in the power spectrum. The power
spectrum shows the peak at the same frequency for any value
of noise strength.

The crucial property of the system studied by Ganbgl.

[10] is the infinite-period bifurcation mechanism for the for-

FIG. 3. Power spectra of the above system initially present a{nat'on (_)f the limit CyC_Ie'_Due to_the_saddle nOd_e bifurcation,
x;=1.001, andy,=1.001 for differentD (a=2, k;=1, k,=2, and  the motion along the limit cycle is highly nonuniform. It was
ks=2). suggested21], that this kind of SR will not occur in a sys-

tem whose bifurcations are created by a Hopf bifurcation.
intensity of the peak in the power spectrum to the height of Apart from this, there is another very important difference
the noisy backgroun@(() at the same frequency. etween our model and the other systems. Most of the sys-
tems that have been explored for the occurrence of SR, in-
cluding that of Ganget al. [10], have a common feature:
(5) They have three fixed points, an unstable point between two
Q(Q) stable points. Due to this, these models have a threshold or a
potential barrier and the processes describe the hopping
Similarly, the SNR of the second harmonic is defined. Wethrough a potential barrier. However, in the past few years
observe maxima in SNR of the first and second harmonicéhe role of noise and periodic drive in nondynamical systems
plotted against the noise intensify. This indicates that the has been investigated. These studies show that SR can occur
noise has induced coherent motion in the system that wagven in threshold free systeriisl], i.e., those systems that
initially at the steady state and this coherence is a maximurare able to respond to input signals of arbitrarily small am-
for an optimum noise intensity. plitude. In contrast, in a system with a threshold, a subthresh-

These results clearly demonstrate the phenomenon of SRId forcing does not generate any output. These studies show
which has been stimulated by noise alone in a system whodbat the addition of external noise to a periodic input signal
deterministic dynamics are autonomous. may result in enhancement of the response of the system. But
no external drive is needed in the Lotka-Volterra model stud-
ied here because the internal dynamics of the system gener-
ates a periodic signal. The prey-predator model has margin-
ally stable periodic solutions for small perturbations away
from steady state. The effect of noise is to trigger oscillations
between the neighboring orbits with a time scale that corre-
sponds to a characteristic frequency. It is interesting to see
that an increase in the noise intensity induces more coherent
motion resulting in a sharper peak in the power spectrum.

Power
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V. CONCLUSION

In the present paper we have studied the behavior of a
simple model of oscillating chemical system in the presence
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FIG. 4. SNR vsD for the first and second harmonics for the
system initially atx;=1.001; y;=1.001(all the parameters are the

same as in Fig. 2

15 2 25 3 35 4

noise intensity

of noise, which may be external or internal. Although, a
noisy prey-predator system will ultimately go to the state
where either both the concentrations are zero or wigese
zero andx escapes to infinity, it is interesting to observe the
occurrence of SR-like behavior in such a system in the short-
time limit (even in the absence of an external periodic drive
In an interesting work by LipowsKi22], SR without an ex-
ternal drive has been reported in a lattice prey-predator
model using Monte-Carlo simulations. In an investigation on
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interplay between noise and periodic modulations in thewvide range of chemical and biological systems that can be
Lotka-Volterra model of two species competition, Vilar and modeled by the above system and SR without external peri-
Sole [19] have demonstrated that the presence of noise i€diC drive may have interesting applications there.

: : o We would like to emphasize that the occurrence of SR in
responsible for the generation of temporal oscillations anqhe above system indiceates that it is a generic phenomenon

for the appearance of spatial patterns that do not arise in thg,y the presence of an external drive or a system having a
deterministic model. This was the first example of SR in athreshold or potential barrier is not essential for its occur-
model of population dynamics. In their paper, a control patence. It will be interesting to study the effect of realistic
rameter, which accounts for the interactions among the speatoise on these systems. In many situations the time scale of
cies, is periodically modulated and noise helps the system tBoise is comparable to that of the system where it becomes

respond to this modulation. However in the paper reportedmportant to investigate the effect of noise correlation. We
re extending this paper to other systems with stable limit

here_the system has |t§ characteristic time scale and does ngi}cles or more complex features as solutions.
require any external drive.
These studies show that, contrary to our belief, environ- ACKNOWLEDGMENT
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